Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli.

Citation:

Mahmood F, Owais K, Montealegre-Gallegos M, Matyal R, Panzica P, Maslow A, Khabbaz KR. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth. 2014;17 (4) :279-83.

Date Published:

2014 Oct-Dec

Abstract:

AIMS AND OBJECTIVES: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. MATERIALS AND METHODS: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA) using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL) file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. RESULTS: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. CONCLUSIONS: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.